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Abstract We investigate trajectory forecasting as an

application of ocean circulation ensemble modeling. The

ensemble simulations are performed weekly, starting

with assimilation of data for various variables from mul-

tiple sensors on a range of observational platforms. The

ensemble is constructed from 100 members, and mem-

ber no. 1 is designed as a standard (deterministic) sim-

ulation, providing us with a benchmark for the study.

We demonstrate the value of the ensemble approach

by validating simulated trajectories using data from

ocean surface drifting buoys. We find that the ensemble

average trajectories are generally closer to the observed

trajectories than the corresponding results from a de-

terministic forecast.

We also investigate an alternative model in which

velocity perturbations are added to the deterministic

results, and ensemble mean results, by a first-order

stochastic process. The parameters of the stochastic

model are tuned to match the dispersion of the ensem-

ble approach. Search areas from the stochastic model

give a higher hit ratio of the observations than the re-
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sults based on the ensemble. However, we find that this

is a consequence of a positive skew of the area distribu-

tion of the convex hulls of the ensemble trajectory end

points.
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Ensemble simulations · Ocean modeling · Search and

rescue

1 Introduction

Operational trajectory forecasting for search and res-

cue operations is routinely performed using results for

ocean currents from a single, deterministic ocean circu-

lation forecast. In the present study, we compare this

approach to one employing an ensemble model/assimil-

ation system.

Ensemble data assimilation techniques were first pro-

posed in the oceanographic context by Evensen (1994).

Uncertainty estimates are propagated forward in time

combining optimally the model and observations. These

techniques also present a convenient framework for en-

semble forecasting, as the same ensemble can be used

consistently for data assimilation and probabilistic fore-

casting.

For this study, we apply the advanced assimilative

ensemble model TOPAZ with which observations of

temperature, salinity, sea level, sea ice concentration,

and ice drift are assimilated by an ensemble Kalman

filter (Bertino and Lisæter, 2008). The analysis, which

is presently performed weekly, is followed by a 7-day

ensemble forecast using 100 members. This is the op-

erational model system for real-time ocean forecasting

http://met.no/English
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in MyOcean’s Arctic Monitoring and Forecasting Cen-

tre.1 Products and services for marine safety and for

the coastal and marine environment are at the heart of

MyOcean.

In the present study, we evaluate a definition of im-

pact (search) areas that is derived from the spread of

trajectories in the ensemble results. Then, we compare

the information available from a large model ensemble

with the deterministic (one member) case. Quantifica-

tions are obtained by comparing the final position of

the trajectories from model results with corresponding

data from ocean surface drifting buoys.

Forecasting of drifting objects is performed oper-

ationally with information about winds, waves, ocean

currents, and properties of the drifting object (Hack-

ett et al., 2006; Breivik and Allen, 2008). The resulting

drift trajectories are generally deflected from the ambi-

ent ocean currents. This relative motion is commonly

known as the object’s “leeway” (Allen and Plourde,

1999; Breivik et al., 2011). However, the drifting buoys

used in the study are attached to a drogue at 15 m

depth and as such are only modestly affected by the

actions of winds and waves. Thus, we will focus on the

drift component that can be solely attributed to ocean

currents.

The search area will be defined using the “convex

hull” of trajectory end points starting from a known

position of particle seeding. From earlier work using

another approach for generating an ensemble, we know

that the ensemble spread can be smaller than expected

from observations (Melsom, 2010). In the present con-

text of surface drift, processes that are not resolved by

the circulation model may give rise to a low ensemble

spread. Hence, we supplement our ensemble approach

with results from a first-order stochastic model.

Section 2 presents the assimilation and ocean circu-

lation model. Then, the observational platform of drift-

ing buoys that are used as “truth” is described in Sec-

tion 3. The validation follows in Section 4, along with

a description of the stochastic model. The results are

discussed, and our recommendations are given in Sec-

tion 5.

2 The TOPAZ model

TOPAZ is a coupled ocean – sea ice data assimilation

system developed for the North Atlantic Ocean, the

Nordic Seas, the Arctic Ocean, and adjacent shelf seas.

It is the main production system of the Arctic Marine

Forecasting Center of the MyOcean project (http://

1 MyOcean is the implementation project of the European

GMES Marine Core Service.

www.myocean.eu.org) and is used both for short-term

forecasting and reanalysis purposes. For the present

study, we use the latest version (TOPAZ 4, Sakov et al.,

2012) which builds on TOPAZ 3 (Bertino and Lisæter,

2008). The model consists of the hybrid coordinate ocean

model (HYCOM, Bleck, 2002; Chassignet et al., 2006)

v. 2.2 coupled with a sea ice model (Hunke and Dukow-

icz, 1997). The system assimilates observations with the

ensemble Kalman filter (Evensen, 1994; Evensen, 2003).

The present implementation of TOPAZ is run in a

weekly cycle, starting with an assimilation step that is

described in detail in Section 2.2 below. Model fields are

subsequently integrated 1 week forward from the time

of the analysis with HYCOM, which is described in Sec-

tion 2.1. The initialization is performed for a date that

precedes the wall clock by 1 week, allowing us to per-

form the integration based on a set of homogeneous at-

mospheric forcing fields. Details about the atmospheric

forcing are presented in Section 2.3 below.

The model code is publicly available. It can be ac-

cessed from https://svn.nersc.no/repos/hycom or

browsed at https://svn.nersc.no/hycom/browser.

2.1 Ocean model

In the present implementation, z-coordinates are used

in the unstratified surface mixed layer, with a tran-

sition to isopycnal coordinates in the stratified ocean

below. Isopycnal layers permit high resolution in ar-

eas of strong density gradients and better conservation

of tracers and potential vorticity, whereas z-layers are

well suited to regions where surface mixing is impor-

tant. The tracer and continuity equations are solved

with the second order flux corrected transport scheme

(FCT2, Iskandarani et al., 2005; Zalesak, 1979), the tur-

bulent mixing sub-model from the Goddard Institute

for Space Studies (Canuto et al., 2002) is applied. Fixed

and nonisopycnal coordinate layers are re-mapped in

the vertical with the weighted essentially nonoscillatory

piecewise parabolic scheme, and biharmonic viscosity is

applied.

The grid has 880×800 horizontal grid points, with

a variable grid spacing of 12 – 16 km. This resolution is

eddy permitting in low and middle latitudes but is too

coarse to properly resolve the mesoscale variability in

the Arctic region, where the Rossby radius may be as

small as 1 – 2 km.

The model is initialized in 1973 using climatology

that combines the World Atlas of 2005 (WOA05, Lo-

carnini et al., 2006; Antonov et al., 2006) with version

3.0 of the Polar Science Center Hydrographic Clima-

tology (Steele et al., 2001). At the lateral boundaries,

http://www.myocean.eu.org
http://www.myocean.eu.org
http://www.myocean.eu.org
http://www.myocean.eu.org
https://svn.nersc.no/repos/hycom
https://svn.nersc.no/hycom/browser
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model fields are relaxed towards the same monthly cli-

matology. The model includes an additional barotropic

inflow of 0.7 Sv through the Bering Strait, represent-

ing the inflow of Pacific water. A monthly climatol-

ogy for river discharge is derived by applying run-off

estimates from the ERA-Interim product to the Total

Runoff Integrating Pathways algorithm (TRIP, Oki and

Sud, 1998).

2.2 Data assimilation

The ensemble Kalman filter (EnKF) is a data assimi-

lation method with which the time-dependent state er-

ror covariance is computed from a perturbed stochas-

tic ensemble. The method assimilates the data asyn-

chronously (Sakov et al., 2010) in a weekly cycle. An

ensemble of 100 members is used here. The analysis is

solved in a local framework (Evensen, 2003) with a ra-

dius of 300 km, in order to limit long-range spurious

correlations introduced by insufficient ensemble rank.

Continuity of the update is ensured with a distance-

dependent function (Gaspari and Cohn, 1999). A small

ensemble inflation is applied by multiplying deviations

from the ensemble mean by a factor of 1.01. The ensem-

ble inflation is implemented as a remedy for a tendency

of the EnKF to reduce the ensemble spread (Sakov and

Oke, 2008). Observation errors are assumed to be un-

correlated.

The EnKF assumes that the variability developed

from a perturbed ensemble is representative of the fore-

cast error. This assumption is based on the fact that the

model will diverge faster in dynamically chaotic regions.

Perturbing model states indirectly through the forc-

ing fields or uncertain model parameter ensures their

dynamical consistency. The perturbation system is de-

scribed in Section 2.4.

The TOPAZ system assimilates the along-track sea

level anomalies (SLA) from satellite altimeters from

AVISO (asynchronously), sea surface temperature (SST)

from the Operational Sea Surface Temperature and Sea

Ice Analysis, in situ temperature and salinity profiles

from Argo floats, sea ice concentration from AMSR-E,

and sea ice drift data from CERSAT. The system uses

a 7-day assimilation cycle and assimilates the gridded

SST, sea ice concentration, and ice drift fields for the

day of the analysis and along-track SLA and in situ T

and S for the week prior to the analysis.

The data assimilation code is publicly available. It

can be accessed from https://svn.nersc.no/repos/

enkf or browsed at

https://svn.nersc.no/enkf/browser.

2.3 Atmospheric forcing

Atmospheric forcing fluxes are derived from a 6-hourly

ECMWF product. The surface fluxes are implemented

with a bulk formula parametrization (Kara et al., 2000)

and the wind stress is derived from 10-m winds, esti-

mated as in Large and Pond (1981).

2.4 Ensemble genesis and perturbation

The model perturbation system accounts for the model

error by increasing the model spread through random

perturbations of a number of forcing fields. Note that

the EnKF is a sequential data assimilation method.

During each cycle the ensemble is propagated forward

in time, starting from the analysis at the previous cy-

cle. The initial ensemble is created from a historical

perturbed ensemble. Following that, the ensemble vari-

ability is maintained by perturbing the forcing fields

and using ensemble inflation.

The initial ensemble is generated so that it con-

tains variability both in the interior of the ocean and

at the surface. We take 20 random model states from

each September of a 20-year model run (1990 – 2009).

Each state is then used to produce five alternative states

by adding spatially correlated noise to the thickness of

isopycnal layers and sea ice thickness, with an ampli-

tude that is 10 % of each field, with a spatial decorre-

lation length scale of 50 km. The perturbation of ocean

layer thickness also has a vertical decorrelation scale

of three layers and an exponential covariance struc-

ture. This ensemble is then spun up during a period

of 5 months with perturbation of the forcing, and then

the strength of the assimilation is gradually increased

over a period of a year.

The perturbations of the forcing fields are assumed

to be red noise simulated by the spectral method de-

scribed by Evensen (2003), computed with a decorrela-

tion timescale of 2 days and decorrelation length scale

of 250 km (Brusdal et al., 2003).

Sea level pressure (SLP) is perturbed with a stan-

dard deviation of 3.2 hPa. The wind perturbations are

the geostrophic winds related to the SLP perturbations,

their intensity being inversely proportional to the value

of the Coriolis parameter. At 40◦N the standard devi-

ations of the winds are 1.5 m/s. In order to account for

the absence of geostrophic equilibrium at the equator,

the wind perturbations change smoothly from 15◦N

to the equator, where they are aligned with the gra-

dients of SLP perturbations. In a linear ocean model,

such perturbations would add Gaussian random incre-

ments to the surface velocities and result in a quasi-

Gaussian distribution of drifter positions, though not

https://svn.nersc.no/repos/enkf
https://svn.nersc.no/repos/enkf
https://svn.nersc.no/enkf/browser
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Fig. 1 Trajectories of the 54 surface drifters that are used in

the present study. Observations are from the period 2011-06-15 –
2011-07-29, in the Atlantic sector north of 50◦ N.

exactly Gaussian due the nonlinear Lagrangian trajec-

tory model (Özgökmen et al., 2000).

Further, ensemble member no. 1 is integrated with

unperturbed atmospheric forcing. Hence, we will refer

to the results from this member as deterministic.

3 Data from drifting buoys

The drifter data come from the archive at the Global

Drifter Program. Each drifter consists of a surface buoy,

with a transmitter and a subsurface drogue at 15-m

depth. Thus, the drifter tracks in principle reflect the

currents at 15-m depth, rather than the surface. Most

of the buoys are tracked by the Argos satellite system,

yielding positions with 150 – 1,000-m accuracy, up to 20

times per day. The remainder are tracked by GPS, with

positional accuracies of 10 m. The ARGOS positions

were quality controlled and interpolated via a Kriging

method to 6-h intervals at AOML/NOAA (Lumpkin

and Pazos, 2007).

The data in the Nordic Seas span the period from

1990 to the present, from over 400 drifters. The drifters

have been used previously to analyze the mean surface

flow in the region (Poulain et al., 1996; Orvik and Niiler,

2002; Jakobsen et al., 2003; Koszalka et al., 2011) sea-

sonal variability of the currents (Andersson et al., 2011)

and mesoscale stirring (Koszalka et al., 2009), among

other things. Here, we examine a subset of the data,

which is constituted of observations from the Atlantic

sector north of 50◦N from the period June 15 – July 28,

2011. The trajectories of the 54 drifters in this subset

are displayed in Fig. 1.

As the drifters are tracking the 15-m currents, they

are influenced by the Ekman (wind-induced) drift, by

the geostrophic eddies penetrating to deeper levels and

by tides (e.g. Lumpkin and Pazos, 2007 and references

therein). At timescales exceeding a couple of days, the

geostrophic current dominate the motion, but the mo-

tion at shorter timescales has significant ageostrophic

contributions (Rio and Hernandez, 2003). Given the na-

ture of Lagrangian motion, all timescales contribute to

a degree to the trajectories, which effectively integrate

the velocities in time.

Nevertheless, previous studies suggest that drifter

motion can be represented as a superposition of advec-

tion by the time mean flow plus a stochastic term which

represents the dispersion (e.g. Griffa, 1996; LaCasce,

2008). The most successful models are those in which

the perturbed variable is the velocity (rather than the

position, as with a random walk), although higher order

models (e.g. and McWilliams, 2002) and models with

“spin” (et al., 2004) have also been explored.

How sensitive is a drifter trajectory to its initial

position? This can be addressed by studying the rela-

tive motion of pairs of drifters, launched close to one

another. Such a study (of “relative dispersion”) was

made in the Nordic Seas by Koszalka et al. (2009) and

LaCasce (2010). The results suggest that separations

between drifters grow exponentially in time, with an

e-folding time of roughly a half day. The exponential

growth proceeds until the pairs are about 10 km apart, a

distance comparable to the deformation radius. There-

after, the separations grow at a slower rate. When the

pairs are 100 km apart on average, the individual mo-

tion is uncorrelated.

These results imply that drifter trajectories are sen-

sitively dependent on their initial conditions, as ex-

ponential growth is a signature of Lagrangian chaos.

Thus, a model has little chance of capturing a drifter

trajectory, at least at timescales beyond a couple of

days. Nevertheless, since individual trajectories can be

modeled stochastically, one would expect the trajectory

to fall within the envelope of an ensemble of simula-

tions, provided the dispersion in the modeled fields was

similar to that in reality and provided the mean flow

was correctly given by the results from the circulation

model.

Model results are available as daily mean values cen-

tered at noon (all dates are in Coordinated Universal

Time). Hence, we split drifter trajectories into daily

segments with start and end position interpolated at

midnight, as described above. By this method, a total

of 1,685 segments from the 54 drifters were available for

our analysis.
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Expt. T (h) trajec.s memb.s perturbations

no. p0 u,v

1 24 1685 100 no

2 48 1651 100 no
3 72 1614 100 no
4 24 1685 1 100 yes no

5 24 1685 1 100 yes yes

Table 1 List of main sets of trajectory simulations. Columns
give information on the following simulation characteristics:

Expt. is a reference number for each experiment, T is the tra-

jectory integration period, trajec.s are no. of drifting buoy tra-
jectory segments, memb.s is ensemble size (=1 if only the deter-

ministic member or the ensemble mean is used), perturbations,

if applied, shows no. of perturbations for each trajectory, and if
Gaussian noise is being added to the initial position (p0) and/or

velocities (u,v). See the text for details.

4 Analysis methods and results

4.1 Drift simulations and a stochastic model

Trajectory simulations are performed as post-process-

ing of the model results, by integration of velocity com-

ponents using the Runge-Kutta fourth-order method.

Daily mean values of the horizontal velocity compo-

nents are used, with an integration time step of 4 h.

Thus, there is one simulated trajectory from the results

of each ensemble member.

The trajectory simulation experiments are given in

Table 1. In experiments 1, 2, and 3 in Table 1, trajec-

tories are computed for the full 100-member ensemble

for drift times of 1, 2, and 3 days, respectively.

Velocities at simulated positions were derived us-

ing bi-linear interpolation horizontally. All trajectories

were computed from a position at midnight to midnight

positions 1, 2, and 3 days later. For each 1 h integration

time step, daily mean velocities from the relevant day

were used.

We construct a complementary ensemble by 100 per-

turbations of the initial position prior to integration

and using velocities from the deterministic simulation

(experiment 4 in the table). This was done in order

to quantify the model sensitivity to positioning errors.

The perturbations are given by drawing random offsets

in both horizontal directions from a Gaussian distri-

bution with a standard deviation of 1 km. This length

scale was chosen on the basis that positional errors are

0.15 – 1 km for drifting buoys that are tracked by AR-

GOS (recall however that the GPS drifters have much

smaller position errors). Note too that the interpolation

in time that is performed to produce a synoptic data

set also contributes to position errors in our analysis.

Finally, in experiment 5 we examine the results from

an alternative model in which the drift is described by

perturbing the model velocities. Again, a set of 100 tra-

jectories are used. The velocities here are specified as a

first-order stochastic process by

(u, v) = (uf , vf ) + (u′, v′), (1)

(du′, dv′) = −κ(u′, v′)dt′ + v0
√

2/TedW (2)

where uf and vf are the velocity components from the

deterministic TOPAZ forecast or the ensemble mean

forecast and u′, v′ are perturbations that represent the

variability due to unresolved processes in the model.

Here, dt′ =1 h is the integration time step used for cal-

culating velocity perturbations and dW =
√
dt′N(0, 1)

is the incremental Wiener process of a normal distribu-

tion (Sawford, 1993). The parameters κ and v0 deter-

mine the behavior of the stochastic component.

In the model, the perturbation velocity has a “mem-

ory” of previous values which decays exponentially in

time, with e-folding time Te. The parameter κ then

becomes 1 − dt′/Te. A reasonable value for Te is the

Lagrangian integral timescale, which is approximately

1 day in the Nordic Seas (e.g. Koszalka et al., 2009; An-

dersson et al., 2011).

The parameter v0 determines the rms of the per-

turbation velocity. One can obtain this by matching

moments of the observed dispersion of a set of parti-

cles (e.g. Griffa et al., 1995). We chose simply to vary

the parameter and compare the resulting dispersion vi-

sually with the ensemble dispersion. Using a value of

v0 = 0.11 m/s produced comparable dispersion, so we

used this value hereafter.

Ideally, one would use stochastic perturbations for

each ensemble member in order to account for unre-

solved processes. From a relativistic perspective, the re-

sulting inflation will be larger for smaller convex hulls.

4.2 Validation methods

The main purpose of this study is to compare using

a single forecast of a drifter position to using an en-

semble. As the motion of a single drifter is in principle

unpredictable, the average position of a group of tra-

jectories may be more valuable than a single calculated

trajectory. A straightforward method to quantify the

difference in the two approaches is to compare the dis-

tances from the observed buoy position to that of the

deterministic position and to that of the ensemble fore-

cast’s center of gravity (CoG, i.e. the mean position).

These two distances are indicated by the dark green

line and the dark gray line in Fig. 2.

The ensemble spread will be represented by the con-

vex hull of all ensemble members, defined as the closed

curve which connects the outermost members and con-

tains all the other members. It is illustrated by the blue
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line in Fig. 2. The monotone chain algorithm due to An-

drew (1979) was used for determining the convex hull.

The convex hull area increases with the ensemble size n,

but rather slowly (in O(
√

log(n)) for Gaussian points)

Rényi and Sulanke (1963), which makes it well suited

to the small ensemble sizes used in operational settings.

Counting the number of observed buoy positions

that fall inside and outside of the convex hulls provides

information on the accuracy of the ensemble forecast.

However, such results are not sufficient to establish our

results as a valid representation of the stochastic vari-

ability, since, e.g., all observations would occur inside a

sufficiently inflated convex hull. In order to gain more

insight into the ensemble forecast, we will also examine

relations between the area of the hull and the distance

between the observations and the ensemble CoG.

4.3 Validation results

Positions of all drifting buoy locations that are vali-

dated in this study are displayed in Fig. 3. Locations

Fig. 2 Validation metrics illustration. Shown here are results
from 1 day drift observations and simulations. The initial posi-
tion is given by the red marker, and the buoy position 24 hours

later is displayed by the blue marker. The end points of the inte-
gration of all 100 ensemble members are given by the small black

markers, the position of the deterministic simulation (member 1)
is plotted on top of a green marker. The center of gravity (CoG)
of the ensemble results are shown by the gray marker, and a blue
line marks the perimeter of the convex hull of the ensemble re-
sults. The convex hull, as it would appear with its shape retained

if the CoG was shifted to the result from the deterministic sim-

ulation is indicated by the light blue line. The distance from the
observed buoy position after the 24-h drift to the positions of the

deterministic forecast, and to the ensemble CoG are displayed by
the dark green and dark gray lines, respectively. Tick lines on the
x- and y-axes are drawn for every 5 km.

Fig. 3 Maps displaying drifting buoy positions where observa-

tions of 24-h drift fall inside the ensemble convex hull (top panel,

green markers) and outside the convex hull (bottom panel, red
markers) for experiment 1.

where observations of 24-h drift fall inside and outside

of the convex hulls in experiment 1 are displayed in the

top and bottom panel, respectively. Hereafter, convex

hulls that contain the end point of the relevant trajec-

tory segment are referred to as a “hits”, while hulls that

do not cover the end point are referred to as “misses”.

The results from experiment 1 reveal a hit rate of 0.45

(see Table 2).

We find that the hull areas are much larger for hits

than for misses, with average values of 1,280 km2 and

410 km2, respectively. This may be an indication that

hits occur for the simple reason that the correspond-

ing hulls are inflated to the degree that their sheer size

makes it more likely that hits are recorded. However,

when we inspect the distances from the convex hulls’

CoG to the observed positions, we find that the average

distance for hits is 10.4 km. This corresponds to a cir-

cular domain of about 350 km2, markedly smaller than

the average convex hull area in these cases (1,280 km2).

Hence, hits generally occur well inside the convex

hulls, as is the case with the sample forecast displayed
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in Fig. 2. Similar results are found for 48-h drift and

72-h drift (experiments 2 and 3), and we note that the

observation-to-CoG distance increases slower than lin-

early in time.

An obvious alternative to the convex hull approach

is to define a circular search area centered at the en-

semble CoG (or the deterministic forecast). Hence, we

computed how large such an area must be in order to

arrive at the same frequency of hits as with the convex

hulls. The results, given in the row labeled “equivalent

circle area” reveals that for the ensemble-based 24-h

drift simulations (experiment 1, 1circ, 5ens) this area

becomes larger as frequency of hits increases, as ex-

pected. Furthermore, as noted above, most of the hits

recorded from experiment 1 occur well inside the con-

vex hulls, making a circular search area a more efficient

choice.

Next, we use offsets of simulated trajectories rela-

tive to observations to compare predictions using the

CoG of the forecast ensemble with predictions using a

single deterministic forecast. We first note that for hits,

the average offsets for 24-h drift in these two cases are

10.4 and 13.7 km, respectively (see Table 2). The defi-

nition of a hit will favor CoG results since the ensemble

results that define the CoG also define the perimeter of

the convex hull. Still, we infer that the CoG is a more

precise forecast than the traditional deterministic fore-

cast, for two reasons. From Table 2 the CoGs are closer

to the observations also for misses. This can also be

seen in Fig. 4, where the misses are largely found near

the diagonal.

Second, we attempt to skew the probabilities to fa-

vor the deterministic forecast by shifting the convex

hulls’ centers from the CoG to the deterministic fore-

cast. When we record the hits for the shifted convex

hulls, we find that the offsets are about the same for

the deterministic forecast hits (10.3 km) as for the CoG

hits (10.4 km).

Initial perturbations corresponding to drifter posi-

tioning errors of O(1 km) contribute little to trajectory

variability, yielding a very low hit rate for the convex

hulls when the perturbations are applied in determin-

istic simulations (experiment 4 in Table 1). Thus, our

results are not very sensitive to small errors in the tra-

jectory initialization. However, the lack of variability

found in experiment 4 is unsurprising, since the pertur-

bation distances are smaller than the model resolution

by an order of magnitude and smaller still than the

features that are resolved by TOPAZ.

Variability is also likely to be restrained by the use

of daily mean values. Dispersion due to actions of sur-

face gravity waves is not modeled, but the effect of this

shortcoming is expected to be low since the buoys we

consider mainly drift with the drogue at 15-m depth.

Experiment no.

1 1circ 2 3 4 5det 5ens

Frequency, observation inside polygon
0.45 0.40 0.47 0.49 0.04 0.53 0.56

Average polygon area (km2)
observation inside polygon 1280 1380 3740 6410 18 560 560

observation outside polygon 410 400 1500 3070 17 550 540

all observations 800 2550 4700 17 550 550
equivalent circle area 400 340 1480 3030 23 760 750

Average ensemble offset (km)
observation inside polygon 10.4 10.1 18.6 25.1 N/A N/A 10.7

observation outside polygon 18.5 18.2 34.7 49.3 N/A N/A 24.8
all observations 14.9 27.2 37.5 N/A N/A 16.9

Average deterministic offset (km)

observation inside polygon 13.7 14.2 24.6 33.0 2.1 10.7 N/A
observation outside polygon 19.2 18.5 35.8 50.9 17.4 27.4 N/A

all observations 16.7 30.6 42.2 16.8 18.5 N/A

Computational cost

1 1 2 3 0.8 0.8 0.8

Table 2 Results from experiments with simulation of drifting buoy trajectories. Experiment numbers refer to the list in Table 1.

Results under experiment 1circ were obtained by replacing all convex hulls by a circular target area with of the same size as the
corresponding convex hull. Differences between experiment 5det and 5ens arise from advecting drifters by the results from member 1

and the ensemble mean, respectively. “Polygon” refers to the convex hull of the ensemble forecast, as described in Section 4.2. Results
in the table row “equivalent circle area” correspond to the area of an invariant circle, centered at the center of gravity (CoG), which

gives the same frequency of hits as reported in the top row. Moreover, “ensemble offset” is the distance from the observed position of
the drifting buoy to the ensemble CoG at the end of the simulation, while “deterministic offset” is the corresponding distance to the
result from the deterministic forecast (member 1). The computational cost is given relative to the resources required for experiment 1.

N/A not applicable
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Fig. 4 Scatter plot that depicts the distance between the end

point of the drifting buoy trajectory and two forecasts. The dis-
tance to the deterministic forecast is given by the x-axis, while the

distance to the ensemble center of gravity is given by the y-axis.

Green and red markers correspond to cases where the trajectory
is inside and outside of the ensemble’s convex hull, respectively.

Least squares fit to the results for trajectories that fall inside

and outside of the hull are displayed by the green and red line,
respectively. Values along the axes are distances in km.

Moreover, the present implementation of TOPAZ does

not include tidal motion. Even though we examine drift

for periods that are close to multiples of the main tidal

constituents, this shortcoming will affect our results.

Nevertheless, most of the drifter data used in the present

validation are recorded in deep waters where the tidal

currents are of less significance than on the continen-

tal shelf. Hence, the statistics in Table 2 may not be

representative for coastal waters.

Experiment 5 is the alternative stochastic model

that was described in Section 4.1, where the velocity

components are perturbed. We consider results obtained

by perturbing the deterministic velocity forecast (5det),

and by perturbing the ensemble mean forecast (5ens).

The resulting convex hulls are of similar magnitude as

in experiment 1, by design (we chose v0 in order to

roughly replicate the observed dispersion). The hit rates

from the two variants of experiment 5 become 0.53 and

0.56, which are a significant improvement over the en-

semble model in experiment 1.

Moreover, although the velocity perturbations in ex-

periment 5 have the same magnitude for all trajec-

tory simulations, the areas of the resulting hulls vary

between 340 and 880 km2. This distribution is due to

variations in divergence/convergence of the background

currents (uf , vf in Eq. 1). Since the search area in ex-

periment 5 is markedly smaller than the equivalent cir-

cle area, we infer that the velocity perturbation algo-

rithm is a valuable approach to confine the search area.

Finally, we consider the results from experiment 1circ ,

where the analysis is repeated after replacing each con-

vex hull from experiment 1 by a circle of the same area

as the hull. The hit rate drops somewhat (to 0.40), sug-

gesting that the geometrical distribution of the ensem-

ble results, as represented by the convex hulls, contains

information. Further, in 26 % of the cases, both the ob-

served position and the buoy’s initial position were in-

side of the circle. As an alternative, we repositioned the

circles so that their centers were set to the initial posi-

tion of the trajectory segment. We found that this led

to a very marginal drop in the hit frequency, to 0.39.

The probability density function of the displace-

ments about the CoG for the ensemble can reasonably

be fit with a Rayleigh distribution, implying that the

separation of the observed buoy from the CoG can be

assessed using standard statistical measures. Thus, on

average, 1.1 and 5.3 % of the ensemble members fall

outside of the 99 and 95 % confidence intervals from

the Rayleigh distribution, respectively. Further inves-

tigations reveal that the 24-h drift hit ratio from ex-

periment 1 of 0.45 with convex hulls corresponds to

applying a 92 % confidence interval with the Rayleigh

distribution.

The model results we use are the model represen-

tation of currents in the uppermost 3 m of the water

column. As pointed out in Section 3 the drifters have a

drogue at 15-m depth. Ensemble results are not avail-

able at this level, but the ensemble mean field (i.e.,

averaging in ensemble member space) has been stored

for all model layers. We compute the temporal average

ratio between the current speed at the two levels and

the corresponding average deflection angle between the

levels, from ensemble mean results for June and July

(deflection angles were weighed by the speed). Time

invariant velocity modification fields were thus avail-

able with the same spatial resolution as the ensemble

product. The trajectory simulations in experiment 1

are repeated, but with speeds and angles modified in

compliance with this algorithm. However, we find that

the performance deteriorates when compared to the re-

sults from experiment 1, we, e.g., get a hit rate of only

0.28. Generally, the model currents at 15-m depth are

somewhat weaker that at 3 m, so drift distances will be

shorter.

From Fig. 5a, we find that the frequency distribu-

tion the 24-h Lagrangian drift with model currents is

skewed towards short distances between start and end
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Fig. 5 (a) Distribution of separation between drifter position

at initial time, and the position 24 h later. The results from
1,685 trajectories are counted in bins of 10 km. Bin limits and

no. of trajectories in each bin are given by the x and y axis,
respectively. The filled vertical bars correspond to data from ob-
servations, the hatched bars show the center of gravity results,
and ⊗ marks results from the corresponding deterministic simu-
lations. Note that the trajectory count from the deterministic run

for the two rightmost bins is 14 and 10, respectively. (b) Angu-

lar offsets in the trajectory paths between results from observa-
tions and center of gravity (filled bars), and between observations

and the deterministic trajectories (hatched bars). Positive values
correspond to model results veering to the left of the observed
trajectories.

points of the trajectories, as one should expect with a

model that is not eddy resolving. This explains why the

quality of trajectory simulations with model currents

at 15-m depth is worse than when calculated from the

surface currents (experiment 1). Moreover, the angu-

lar offsets in Fig. 5b reveal that the model results are

shifted somewhat to the right of the observations, while

the wind-driven current near the surface is shifted to

the left of its direction at deeper levels in the northern

hemisphere. Since the parameterization of surface mo-

mentum fluxes has not been fine-tuned in the model,

and since the current at 3-m depth yields better fits to

the drifter data, we use the results from 3-m depth in

this study.

We recall from Section 2 that the model results are

available on the basis of a weekly cycle. In Fig. 6, the

average area of the convex hulls is displayed as a func-

tion of time after the assimilation step in the TOPAZ

production. We observe that the hull areas grow with

the forecast time range. This reflects the evolution that

is expected in a turbulent flow, where differences be-

tween ensemble members grow in time.

We also note from Fig. 6 that there is no obvious re-

lation between hull areas and hit rates in the context of

variations during the weekly TOPAZ cycle. The drift-

ing buoys have knowledge of neither the TOPAZ system

nor the day of the week. Further, the atmospheric forc-

ing in the present weekly cycle is approximately homo-

geneous. Hence, we suspect that even though the hull

Fig. 6 Changes in average convex hull area and hit rate as a

function of day in the weekly TOPAZ cycle. Day 1 and day 7

results represent the first 24 h after assimilation and the final
24 hours before the next assimilation step. The results for hull

areas are displayed by the black markers, with values given at
the left y-axis, while hit rates are displayed by gray markers with
values at the right y-axis.
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areas grow with forecast time range, i.e., reducing the

precision of the forecast, the accuracy is also reduced

with forecast time range since the hit rate does not in-

crease.

In order to examine effects of the variability in the

surface kinetic energy density (Ek = (u2 + v2)/2), we

first partition this quantity locally by writing

Ek(x, y, t,m) = Ek(x, y) + Êk(x, y, t)

+E′k(x, y, t,m) (3)

where m denotes ensemble member. Here, Ek, Êk, and

E′k denote the overall mean value in time and ensemble

space, the difference between the (time-dependent) en-

semble mean and Ek, and the difference between each

ensemble member and Êk, respectively. We next intro-

duce the fraction of variability due to the ensemble vari-

ance to the total variability, which we may write

< E′k
2 > / < (Ek − Ek)2 > (4)

Here, angled brackets indicate the ensemble average

value. This quantity is properly referred to as the frac-

tion of nondeterministic variability, see Metzger and

Hurlburt (2001) and Melsom (2005) for details.

The time average of the fraction of nondeterministic

variability of the kinetic energy density is displayed in

Fig. 7. We note that the ensemble variance dominates

in dynamically active regions.

Mean convex hull areas during each weekly TOPAZ

production cycle (Section 2) were computed separately

for each drifter, by averaging the hull areas that corre-

spond to available trajectory segments for this drifter

(the average thus represent between one and seven seg-

ments, depending on availability of data). Results for

the ensemble-based simulation of 24-h drift are over-

laid in Fig. 7. As expected, the convex hulls generally

become large in regions of high nondeterministic vari-

ability. But note that this quantity is an expression for

relative, not absolute, variability.

The set of available trajectories, shown in Fig. 1, is

sparse and not distributed uniformly over the domain.

So our results should not be interpreted as being general

for the present domain. In this perspective, the regional

differences displayed in Fig. 7 give valuable information

regarding the clustering of relatively small and large

convex hulls in relation to the local flow regime.

Above, we achieved a higher hit rate when the stochas-

tic model was applied to the deterministic model results

in experiment 5det than in the ensemble results from

experiment 1. On the other hand, we found that the

ensemble CoG is generally closer to the observed buoy

positions than the deterministic result (ensemble mem-

ber no. 1).

Fig. 7 Fraction of nondeterministic variability in the model re-
sults for kinetic energy density in the uppermost layer. Only the

subdomain from which trajectories are studied is displayed here.
The color coding of the fraction values is given by the color bar.

Superimposed on this are weekly average convex hull areas, pre-

sented as filled and colored circles. The corresponding color cod-
ing is displayed by the labeled circles. See the text for details.

These results may appear contradictory, but they

are due to the nonsymmetric distribution of convex hull

areas from experiment 1 that is displayed by the black

line in Fig. 8. More than 60 % of the convex hulls from

experiment 1 have an area of 400 km2 or less (nearly

50 % have an area <200 km2). For these area slots, the

hit frequency in experiment 1 is about 0.3 only.

On the other hand, the stochastic model (using v0 = 0.11 m/s)

inflates hull areas in regions with low ensemble vari-

ability, thus recording significantly more hits in such

regions. Relevant examples for these cases are found,

e.g., in the northern Nordic Seas and off the southern

tip of Iceland, where low ensemble variability and small

hull areas (Fig. 7) are seen in regions where the hit-to-

miss ratio is low (Fig. 3).

5 Discussion

We have described the initial implementation of a prob-

abilistic forecast, but there are several ways it could

be enhanced: first by adjusting the horizontal radius

and timescale of the perturbations of atmospheric forc-

ing fields, then by fine-tuning the air – sea momentum

fluxes by for example taking into account the influence

of waves on the mixing. We also expect that the re-

sults will improve with model resolution. Then, given

sufficient density of observations, the impact of data as-
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similation will be more visible in the evolution of the

hit rate during the weekly cycle.

In search and rescue operations, it is of crucial im-

portance to have a search area which is “small” and

yet have a high probability of retrieving the lost ob-

ject. The results displayed in Fig. 8 reveal that search

areas are frequently underestimated by the convex hulls

that span the ensemble trajectories.

Nevertheless, the stochastic experiment gives hit fre-

quencies of about 0.15 – 0.25 only when the convex hull

areas from the ensemble experiment exceed 2,000 km2.

This suggests that the ensemble dispersion reflects an

increasing uncertainty in the end positions of trajecto-

ries in regions where the relevant ocean circulation pro-

cesses give rise to high dispersion rates. In the domain

that is examined here, such large convex hull areas are

only found south of 55◦N (see Fig. 7).

In an operational setting, other elements may also

be fine-tuned on the basis of validation results. As an

example, drift velocities from model results may be in-

creased systematically in order to compensate for the

bias that can be seen in Fig. 5. Formulations that in-

Fig. 8 Comparison of results from the ensemble experiment and
the stochastic perturbation experiment (expt. 1 and 5ens in Ta-
ble 1, respectively). Results are displayed as functions of poly-

gon area from the ensemble experiment. Black line and mark-
ers show no. of polygons recorded in each of the area intervals

that are listed along the x-axis. Thick gray line and large gray

markers show the distribution of hit frequencies from the en-
semble experiment. Thin gray line and small gray markers show
the corresponding distribution from the stochastic experiment.

Note that the hit frequency distribution by polygon area slots for
the stochastic experiment was computed as a function of the en-

semble experiment area of the corresponding observed trajectory

(and thus not the stochastic experiment polygon area).

volve the statistical moments of the ensemble distri-

bution may provide useful and condensed information

about the results.

We conclude that among the various approaches to

drift modeling that we have tested, the best drift fore-

casts will be achieved by expanding the search areas

beyond the convex hulls based on ensemble trajectories

when this area is of modest size. If, on the other hand,

the convex hull area is large, a search and rescue effort

should anticipate that a wider area must be covered in

order to recover the lost object. In this context, the lim-

its for when the convex hulls are “large” and “small”

are likely to depend on the horizontal resolution of the

ocean circulation model.

It is particularly noteworthy that all results improve

when the deterministic results are substituted by the

ensemble mean values. Moreover, shifting to more fre-

quent assimilation steps is likely to be beneficial for

the quality of the ensemble trajectory forecast from

TOPAZ.
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